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The background flow method. Part 2.
Asymptotic theory of dissipation bounds
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(Received 11 August 1997 and in revised form 8 December 1997)

We study analytically the asymptotics of the upper bound on energy dissipation for
the two-dimensional plane Couette flow considered numerically in Part 1 of this work,
in order to identify the mechanisms underlying the variational approach. With the
help of shape functions that specify the variational profiles either in the interior or
in the boundary layers, it becomes possible to quantitatively explain all numerically
observed features, from the occurrence of two branches of minimizing wavenumbers
to the asymptotic parameter scaling with the Reynolds number. In addition, we derive
a new variational principle for the asymptotic bound on the dissipation rate. The
analysis of this principle reveals that the best possible bound can only be attained
if the variational profiles allow the shape of the boundary layers to change with
increasing Reynolds number.

1. Introduction
The numerical exploration of the extended Doering–Constantin variational prin-

ciple (Doering & Constantin 1994; Nicodemus, Grossmann & Holthaus 1997a) for
computing bounds on the rate of energy dissipation in turbulent shear flow, as
reported in Part 1 of this work (Nicodemus, Grossmann & Holthaus 1998), has re-
vealed some fairly systematic features: at a certain Reynolds number the minimizing
wavenumbers bifurcate, such that the optimal upper bound on the dissipation rate is
determined by both minima simultaneously. Moreover, the optimized parameters of
the variational profiles exhibit a simple scaling behaviour. These findings call for an
analytical explanation.

In the present second part of our study we will develop a detailed asymptotic
theory for the model problem considered in Part 1, the plane Couette flow without
spanwise degrees of freedom. From the numerical solution of the variational problem
for the unrestricted, three-dimensional Couette problem (Nicodemus, Grossmann &
Holthaus 1997b) we know that this model actually captures all relevant facts.

The plan of our analysis is the following: in § 2 we study the two minimizing
wavenumber branches on the basis of the spectral constraint. The most important
technical tools introduced there are two types of shape functions, which are not
variational profiles themselves, but which contain the essential information about the
profiles either in the interior or in the boundary layers. These functions will allow
us to show that in the asymptotic regime one of the minimizing wavenumbers is
determined solely by the shape of the profiles in the interior, the other one solely by
the shape of the profiles in their boundary layers. We build our arguments mainly
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on two lemmas, which have been formulated such that the propositions are as mild
as possible, but which will be found to have far-reaching implications. Together with
a third, more technical lemma which has been banished to the Appendix, they will
allow us to understand the asymptotics of the two minimizing wavenumbers.

An understanding of the two minimizing wavenumbers, however, does not auto-
matically imply an understanding of the optimal upper bound on the dissipation
rate, since the two minima of R0{φ}(k) (see (3.30) in Part 1) might have different
values, and it is only the global minimum that matters for the variational principle.
The astonishing observation that both minima actually take on the same value is
explained in § 3. It will be shown that, besides the characterization of the profiles by
two shape functions, only a certain monotonic property is required to prove both
the locking of the two minima to the same value and the Re-scaling behaviour of
the optimal profile parameters; it will even be possible to express the power law
prefactors in terms of the shape functions.

The next step then is to show in § 4 that the optimal asymptotic upper bound of
the dissipation rate is determined entirely by the behaviour of the variational profiles
in the boundary layers, and to formulate a much simpler variational principle for
this asymptotic bound. The solution of this new principle will reveal that the best
bounds derivable from the extended Doering–Constantin principle can be obtained
only if the variational profiles contain a parameter which governs their shape within
the boundary layers. This insight will be taken up in § 5 in order to compute the
upper bound with the help of such a generalized class of test profiles for all Reynolds
numbers, resulting in the bound that has already been included in the overview given
in figure 9 of Part 1.

Finally, we will draw our conclusions in § 6. When referring to a formula from
Part 1, this will be indicated by the roman numeral I followed by the equation
number.

2. The two branches of the bifurcation plot
Let us recall a key result obtained in the numerical solution of the variational

principle (I, 2.12) with the spectral constraint (I, 2.13) for the restricted plane Couette
flow: for Reynolds numbers above ReB ≈ 860 the critical Reynolds number Rc{φ}, up
to which a given profile φ remains an admissible test function, is associated with two
different wavenumbers k1 and k2. This implies a degeneracy of the eigenvalue problem
(I, 2.13): two eigenvalues pass through zero simultaneously. After optimization over
all profiles, one of these two k-branches scales linearly with Re, the other becomes
constant. The two branches of minimizing wavenumbers resulting from a particular
choice of test profiles have been depicted in figure 7 of Part 1, which will be referred
to as bifurcation plot in the following. In this section we explain the emergence of the
two branches analytically.

The starting point is the boundary value problem (I, 4.3)–(I, 4.8), which arises in
the reformulation of the spectral constraint:

y′1 = 2k [−y1 + y2] , (2.1)

y′2 = 2k
[

1
2
y1 − y2 + 1

2
y4

]
, (2.2)

y′3 = −2ky3 −
R

k
φ′y1, (2.3)

y′4 = 2k [−y4 + y5] , (2.4)
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y′5 = 2k
[

1
4
y1 + 1

2
y4 − y5 + 1

4
y6

]
, (2.5)

y′6 = 2k [y2 − y6] +
R

2k
φ′y3 (2.6)

with initial condition

y(0) = (0, 0, 0, 0, 0, 1)T (2.7)

and boundary condition

y1(1) = 0. (2.8)

R is the rescaled Reynolds number, see (I, 2.14), k > 0 the absolute value of the
wavenumber pertaining to the x-direction, and φ(z) is some profile function. We will
denote these quantities as the input to the system (2.1)–(2.6). The equivalence of this
boundary value problem to the spectral constraint (I, 2.13) has been established in §§ 3
and 4 of Part 1. Our goal here is to elucidate how the magnitude of the wavenumber
k determines the sensitivity of this problem to the shape of the profiles φ. Namely,
if we have profiles with boundary segments of thickness δ, see (I, 4.1) for a specific
example, and if we keep k fixed while letting δ tend to zero, then the above boundary
value problem becomes sensitive solely to the shape of the profiles in the interior,
whereas it is solely the shape of the boundary segments that becomes essential if we
take k proportional to δ−1.

Thus, in the following we consider quite general families of profile functions φδ
parametrized by the width δ of their boundary segments, 0 < δ < 1

2
. Each profile

can be divided into three parts, corresponding to the intervals 0 6 z 6 δ (‘left-hand
boundary layer’), δ 6 z 6 1− δ (‘interior’) and 1− δ 6 z 6 1 (‘right-hand boundary
layer’). Rather than focusing directly on the Reynolds number, we use δ as the
control parameter. The limit of interest is δ → 0; different powers of 1/δ characterize
different orders of magnitude.

2.1. Wavenumbers of O
(
δ0
)
: the lower branch

If the wavenumber k entering the problem (2.1)–(2.6) is kept (almost) fixed while the
profiles, and hence δ, are varied, we have

k = O
(
δ0
)

and k−1 = O
(
δ0
)
. (2.9)

It will be useful to introduce functions ψ(z) which, although they are not variational
profiles themselves, contain information about the shape of the actual profile functions
φ(z). Their purpose will become clear from the following lemma:

Lemma 2.1. Let ψ(z) be some continuously differentiable function defined in the in-
terval [0, 1] which satisfies the equation

ψ′
(

1
2

)
= 1, (2.10)

and let Rψ be a positive constant. In addition, let φδ(z) be a family of continuously
differentiable functions defined in [0, 1] which are parametrized by δ, 0 < δ < 1

2
, and

also depend continuously on some additional parameter pδ > 0. Assume further that the
following properties hold:

(i) φδ and pδ depend continuously on the parameter δ;
(ii) for each δ the function φδ in the interior is determined by ψ according to

φ′δ(z) = pδ ψ
′(z) for δ < z < 1− δ; (2.11)

(iii) within the boundary layers, i.e. for 0 6 z 6 δ and 1− δ 6 z 6 1, one has

φ′δ(z) = pδ × O
(
δ−5/2

)
. (2.12)
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Then it follows that the first component of the solution vector yψ originating from the
initial value problem (2.1)–(2.7) with input quantities k, R = Rψ , and φ(z) = ψ(z)
differs from the first component of the solution vector yδ corresponding to the input k,
R = Rψ/pδ , and φ(z) = φδ(z) in the entire interval [0, 1] at most by an amount of O(δ),

yδ,1(z) = yψ,1(z) + O(δ) . (2.13)

Proof. After rewriting the initial value problem (2.1)–(2.7) as an equivalent vector
integral equation, one can make in each of the three regimes 0 6 z 6 δ, δ 6 z 6 1−δ,
and 1− δ 6 z 6 1 an ansatz of the form

yδ,i(z) = yψ,i(z) + O(δαi) , i = 1, . . . , 6.

Employing the properties (2.9), (2.11), and (2.12), one can fix the exponents αi and
show by means of integral estimates that one indeed has obtained a solution within
each interval. Gluing the three parts of the solution together, one finds a solution in
the entire interval [0, 1] which satisfies (2.13). The statement then follows from the
fact that the solution to the initial value problem is unique.

Note the spirit of this lemma: the reference function ψ(z) is not a profile, since it
does not have to satisfy the profiles’ boundary conditions, but it is used nonetheless
as an input for the initial value problem. Even though the derivative of φδ(z) is
not related to that of ψ(z) within the boundary layers, the difference of the first
components of the corresponding solution vectors remains small. Because of the
normalization (2.10) the parameter pδ is the slope of φδ at z = 1

2
. Thus, pδ can be

considered as a generalization of the parameter p employed previously in (I, 4.1).
In order to make the lemma work we now introduce shape functions for the

interior , i.e. functions ψint(z) which are continuously differentiable in [0, 1], fulfil the
requirement

ψ′int

(
1
2

)
= 1 (2.14)

and the additional symmetry condition

ψ′int(z) = ψ′int(1− z) . (2.15)

We then take a fixed k together with ψint as input to the system (2.1)–(2.6), and set
Rψ to the smallest positive R-value for which the boundary value problem (2.1)–(2.8)
is satisfied, Rψ = R0{ψint}(k), generalizing the notation introduced in § 3 of Part 1. If
we now restrict the family φδ(z) to functions with the properties

φδ(0) = 0, φδ(1) = 1, and φδ(z) = 1− φδ(1− z) , (2.16)

so that each φδ becomes a candidate profile for the variational principle, see (I, 2.10)–
(I, 2.13), then the statement (2.13) of the lemma, applied in the limit δ → 0, asserts

lim
δ→0

pδ R0{φδ}(k) = R0{ψint}(k) , (2.17)

with pδ denoting the slope of φδ at z = 1
2
. Moreover, considering R0{ψint}(k) as a

function of the wavenumber k, this function will exhibit a global minimum for some
k > 0. By construction, the minimizing wavenumber does not depend on the boundary
layer thickness δ, and therefore is of the required order, O

(
δ0
)
. The equation (2.17)

thus states that for sufficiently small δ the minima corresponding to the actual profiles
φδ can be understood in terms of a shape function that specifies the profiles in the
interior only.
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Hence, for families of profiles φδ that merely possess the ‘weak’ properties (2.16),
(2.11), and (2.12), we have obtained a rather strong statement: for small δ, and provided
k is of O

(
δ0
)
, the k-dependencies of R0{φδ}(k) are mirror images of the k-dependence

of R0{ψint}(k), where the function ψint(z) contains the information about the shape of the
profiles φδ in the interior. This implies that for small δ the behaviour of the profiles
within the boundary layers plays no role, if k is kept constant.

Focusing now on the minima

R1{φδ} ≡ min
k=O(δ0)

{R0{φδ}(k)} , (2.18)

we obtain from (2.17) that

lim
δ→0

pδ R1{φδ} = Rc{ψint} (2.19)

with Rc{ψint} ≡ mink>0 {R0{ψint}(k)}. The minimizing k will be denoted as kc{ψint}.
We can harvest the first fruits of this abstract reasoning when we apply these

arguments to the profile functions (I, 4.1), which have been employed for the numerical
analysis in Part 1 of this work. Here the parameter pδ equals the previous p, and a
corresponding shape function for the interior – uniquely determined up to a constant
– is just the laminar profile,

ψint(z) = z. (2.20)

If we take the scaling properties (I, 5.4) for δ and p for granted, δ ∼ αRe−1,
p ∼ βRe−1, – this gap will be closed later – then we have within the two boundary
layers p−1φ′(z) = O

(
δ−1
) [
p+ O

(
δ−1
)]

= O
(
δ−2
)
. Thus, with Rψ = R0{ψint(z) = z}(k)

and pδ = p the condition (2.12) of the lemma is satisfied, so that we now understand
why the lower k-branch of the bifurcation plot, denoted as k1, approaches for Re→∞
the very same k-value that also characterizes the energy stability limit ReES : since
the laminar profile serves as a shape function in the limit of high Reynolds numbers,
so that the ensuing high-Re minima pertaining to k1 are replicas of the minima at
the energy stability limit, we have the exact identity (with the number in brackets
denoting the uncertainty of the last digit)

lim
Re→∞

k1

2π
= lim

δ→0

k1

2π
=
kc{ψint(z) = z}

2π
=
kES

2π
= 0.602 677 6(1). (2.21)

2.2. Wavenumbers of O
(
δ−1
)
: the upper branch

In order to carry through an analogous discussion also for the upper k-branch
appearing in the bifurcation plot, we now consider values of k that vary proportionally
to δ−1, and rewrite the boundary value problem (2.1)–(2.8) by introducing the new
rescaled quantities κ ≡ 2δk and ρ ≡ 2δR, together with the rescaled independent
variable

ξ ≡ z/(2δ). (2.22)

Then the rescaled wavenumber κ becomes independent of δ, i.e. κ = O
(
δ0
)

and

κ−1 = O
(
δ0
)
. Defining ỹ(ξ) ≡ y(z) and φ̃(ξ) ≡ φ(z), the boundary value problem can

be expressed in terms of the new quantities:

ỹ′1 = 2κ [−ỹ1 + ỹ2] , (2.23)

ỹ′2 = 2κ
[

1
2
ỹ1 − ỹ2 + 1

2
ỹ4

]
, (2.24)

ỹ′3 = −2κỹ3 −
ρ

κ
φ̃′ỹ1, (2.25)
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ỹ′4 = 2κ [−ỹ4 + ỹ5] , (2.26)

ỹ′5 = 2κ
[

1
4
ỹ1 + 1

2
ỹ4 − ỹ5 + 1

4
ỹ6

]
, (2.27)

ỹ′6 = 2κ [ỹ2 − ỹ6] +
ρ

2κ
φ̃′ỹ3; (2.28)

the initial condition is

ỹ(0) = (0, 0, 0, 0, 0, 1)T , (2.29)

and the boundary condition reads

ỹ1

(
1/(2δ)

)
= 0. (2.30)

Note that the thickness of the boundary layers, originally characterized by δ, acquires
the constant value 1

2
, so that now we have to distinguish the three regimes 0 6 ξ 6 1

2

(left-hand boundary layer), 1
2
6 ξ 6 1/(2δ)− 1

2
(interior) and 1/(2δ)− 1

2
6 ξ 6 1/(2δ)

(right-hand boundary layer).

Lemma 2.2. Let ψ(ξ) be some continuously differentiable function which is defined
piecewise in the interval

[
0, 1/(2δ)

]
(with 0 < δ < 1

2
),

ψ(ξ) =

 ψbl1(ξ) for 0 6 ξ 6 1
2

C for 1
2
< ξ < 1/(2δ)− 1

2

ψbl2(ξ) for 1/(2δ)− 1
2
6 ξ 6 1/(2δ),

(2.31)

where C is a constant, and let ρψ be a positive constant. In addition, let φ̃δ(ξ) be a
family of continuously differentiable functions defined in

[
0, 1/(2δ)

]
, equipped with the

following properties:

(i) φ̃δ depends continuously on the parameter δ;
(ii) for each δ the shape of the boundary segments of the functions φ̃δ is determined

by the boundary segments ψbl1 and ψbl2 of ψ,

φ̃′δ(ξ) =

 ψ′bl1(ξ) + O(δ) for 0 6 ξ 6 1
2

O
(
δ2
)

for 1
2
< ξ < 1/(2δ)− 1

2

ψ′bl2(ξ) + O(δ) for 1/(2δ)− 1
2
6 ξ 6 1/(2δ).

(2.32)

Then it follows that each component of the solution vector ỹψ originating from the

initial value problem (2.23)–(2.29) with input quantities κ, ρ = ρψ , and φ̃(ξ) = ψ(ξ)
differs from the corresponding component of the solution vector ỹδ resulting from the
input κ, ρψ , and φ̃(ξ) = φ̃δ(ξ) in the entire interval

[
0, 1/(2δ)

]
at most by an amount

of O(δ),

ỹδ(ξ) = ỹψ(ξ) + O(δ) . (2.33)

Proof. Within the boundary layers 0 6 ξ 6 1
2

and 1/(2δ)− 1
2
6 ξ 6 1/(2δ) we can

carry through the proof in a manner analogous to the proof of lemma 2.1. But in the
interior regime 1

2
6 ξ 6 1/(2δ)− 1

2
this line of reasoning does not work (Nicodemus

1997). We thus need a sharper argument: introducing an auxiliary perturbation
parameter ε, we write

ỹ ′δ(ξ) =
[
2κA0 + ε

ρψ

κ
φ̃′δ(ξ)A1

]
ỹδ(ξ) for 1

2
6 ξ 6 1/(2δ)− 1

2
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with initial condition (2.33) at ξ = 1
2
, where A0 and A1 are matrices with constant

coefficients defined by

A0 ≡


−1 1 0 0 0 0

1
2
−1 0 1

2
0 0

0 0 −1 0 0 0
0 0 0 −1 1 0
1
4

0 0 1
2
−1 1

4
0 1 0 0 0 −1

 , A1 ≡


0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2
0 0 0

 . (2.34)

For ε = 1 this initial value problem is the one to be studied. Using the ansatz

ỹδ(ξ) =

∞∑
n=0

εn ỹδ,n(ξ) ; ỹδ,0
(

1
2

)
= ỹδ

(
1
2

)
, ỹδ,n

(
1
2

)
= 0 for n > 1,

we solve this problem order by order in the perturbation parameter ε. O
(
ε0
)

produces
the problem

ỹ ′δ,0(ξ) = 2κA0ỹδ,0(ξ) , ỹδ,0
(

1
2

)
= ỹδ

(
1
2

)
,

the solution of which is given by

ỹδ,0(ξ) = e2κA0(ξ−1/2) ỹδ
(

1
2

)
= e2κA0(ξ−1/2) [ỹψ( 1

2

)
+ O(δ)

]
= ỹψ(ξ) + e2κA0(ξ−1/2) × O(δ) .

Because the largest eigenvalue of A0 is zero, cf. the Appendix, we have for ξ > 1
2

e2κA0(ξ−1/2) = O
(
δ0
)
,

and we find

ỹδ,0(ξ) = ỹψ(ξ) + O(δ) for 1
2
6 ξ 6 1/(2δ)− 1

2
. (2.35)

For n > 1 the ε-expansion yields

ỹ ′δ,n(ξ) = 2κA0ỹδ,n(ξ) +
ρψ

κ
φ̃′δ(ξ)A1ỹδ,n−1(ξ) , ỹδ,n

(
1
2

)
= 0.

With the help of the solution

ỹδ,n(ξ) =
ρψ

κ

∫ ξ

1/2

dt e2κA0(ξ−t) φ̃′δ(t)A1ỹδ,n−1(t)

we conclude via complete induction

ỹδ,n(ξ) = O(δn) for 1
2
6 ξ 6 1/(2δ)− 1

2
. (2.36)

Thus, for ε = 1 one obtains from (2.35) and (2.36)

ỹδ(ξ) = ỹψ(ξ) + O(δ) +

∞∑
n=1

O(δn) = ỹψ(ξ) + O(δ) for 1
2
6 ξ 6 1/(2δ)− 1

2
.

In order to exploit this lemma 2.2 for the high-Re analysis of the eigenvalue
problem (2.1)–(2.8), we now introduce the shape functions for the boundary layers
ψbl(ξ) as continuously differentiable functions defined in the interval [0, 1] that satisfy
the boundary and symmetry conditions

ψbl(0) = 0, ψbl(1) = 1, and ψbl(ξ) = 1− ψbl(1− ξ) , (2.37)
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and have vanishing slope at ξ = 1
2
,

ψ′bl
(

1
2

)
= 0. (2.38)

In addition, we consider for each given ψbl the function

ψ(ξ) ≡

 ψbl(ξ) for 0 6 ξ 6 1
2

1
2

for 1
2
< ξ < 1/(2δ)− 1

2

ψbl
(
ξ −

(
1/(2δ)− 1

))
for 1/(2δ)− 1

2
6 ξ 6 1/(2δ).

(2.39)

This ψ is a (symmetric) example of the function appearing in lemma 2.2, see (2.31).
If one cuts out the interior part where ψ is constant and connects the two remaining
boundary segments, one recovers the shape functions ψbl . Note that these shape
functions do not depend on the parameter δ, just as the previous shape functions ψint

do not depend on the parameter pδ .
As in the application of lemma 2.1, we consider families of functions φδ(z) which

satisfy (2.16), so that each φδ is a candidate profile for the variational principle, but
now each member of the family inherits its shape within the boundary layers from
ψbl:

φ′δ(z) =

{
ψ′bl
(
z/(2δ)

)
/(2δ) + O

(
δ0
)

for 0 6 z 6 δ
O(δ) for δ < z 6 1

2
.

(2.40)

For preassigned rescaled wavenumber κ, we set for each δ the parameter ρψ required
in lemma 2.2 to the smallest positive ρ-value for which the boundary value problem
(2.23)–(2.30) with φ̃(ξ) = ψ(ξ) as input can be solved. We denote this value as
ρ0{ψ}(κ). Then (2.33) yields the assertion

lim
δ→0

2δ R0{φδ}
(
κ/(2δ)

)
= lim

δ→0
ρ0{ψ}(κ) , (2.41)

so that we can relate the critical rescaled Reynolds numbers pertaining to the actual
profiles to a functional which contains information about the profiles in the boundary
layers only. Comparing (2.41) to (2.17), a major technical difference between these
two equations becomes obvious: both sides of (2.41) explicitly require that a limit
δ → 0 be taken. As shown in the Appendix, the right-hand side of (2.41) can be
evaluated by recasting the boundary value problem (2.23)–(2.30) for input profiles ψ
into a simpler boundary value problem which refers only to the right-hand boundary
segment of the shape function ψbl .

This reduced boundary value problem consists of the system (2.23)–(2.28), consid-
ered in the interval

[
1
2
, 1
]
, with initial condition

ỹ
(

1
2

)
= (1, 1, 0, 1, 1, 1)T (2.42)

and boundary condition

ỹ1(1) = 0. (2.43)

Denoting the smallest positive ρ-value for which this boundary value problem is solved
with κ and ψbl as input as σ0{ψbl}(κ), the main result obtained in the Appendix, see
(A 18), can be expressed in the form

lim
δ→0

ρ0{ψ}(κ) = σ0{ψbl}(κ) .

The possibility of reducing the boundary value problem in this manner hinges on
the following: if we have a function ψ which is constant in the interior as an input
for the system (2.23)–(2.28), then these equations can be integrated analytically in the
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interior. If one approaches the limit δ → 0, the interior range becomes so long that
it is only the eigenvector corresponding to the largest (non-degenerate) eigenvalue
of the coefficient matrix that determines the solution at the connection point to
the right-hand boundary layer. Consequently, the initial conditions (2.42) have been
chosen proportional to this eigenvector. The original system of differential equations
(I, 3.22)–(I, 3.27) derived directly from the restricted Couette problem had been
transformed in § 4 of Part 1 with a common exponential factor e−2kz , resulting in the
system (2.1)–(2.6) considered here. The guiding principle behind this transformation
was to ensure that the largest eigenvalue of the coefficient matrix that emerges when
the profile function is replaced by a constant is equal to zero. Each damping constant
not equal to 2k would have produced a non-vanishing largest eigenvalue and, in turn,
would have made the numerical analysis for high Reynolds numbers exceedingly
difficult, if not impossible.

Our assertion (2.41) therefore now becomes a statement for R0{φδ} that acquires
the form of (2.17),

lim
δ→0

2δ R0{φδ}
(
κ/(2δ)

)
= σ0{ψbl}(κ) , (2.44)

and we can proceed in close analogy to the previous case. When considering σ0{ψbl}(κ)
as a function of the rescaled wavenumber κ, we know that this function must have
a global minimum for some κ > 0; the minimizing κ is manifestly independent of
δ and therefore of the required order, O

(
δ0
)
. For sufficiently small δ, (2.44) relates

this minimum to the minima corresponding to the actual profiles. Hence, for profile
families φδ that merely satisfy (2.16) and (2.40) we have obtained a further far-
reaching statement: for small δ, and provided k is of O

(
δ−1
)
, we can understand the

k-dependencies of R0{φδ}(k) as being mirror images of the k-dependence of σ0{ψbl}(κ),
where κ = 2δk, and the function ψbl contains the information about the profiles φδ in
the boundary layers.

Focusing on the minima of R0{φδ}
(
κ/(2δ)

)
, the conclusion that parallels (2.19)

reads

lim
δ→0

2δR2{φδ} = σc{ψbl} , (2.45)

where

R2{φδ} ≡ min
k=O(δ−1)

{R0{φδ}(k)} (2.46)

and σc{ψbl} ≡ minκ>0 {σ0{ψbl}(κ)}; the minimizing κ will be written as κc{ψbl}.
The fruits of these efforts now consist in a first understanding of the upper k-

branch appearing in the bifurcation plot, referred to as k2, if we take again the scaling
properties (I, 5.4) for granted. With

ψbl(ξ) =

{
2ξ (1− ξ) for 0 6 ξ 6 1

2

1− 2ξ (1− ξ) for 1
2
< ξ 6 1

(2.47)

as boundary layer shape function for the profiles (I, 4.1), we obtain for 0 6 z 6 δ

φ′δ(z) =
ψ′bl
(
z/(2δ)

)
2δ

+ O
(
δ0
)
,

whereas for δ < z 6 1
2

we have φ′δ(z) = O(δ). Thus, the condition (2.40) required to
deduce (2.45) is satisfied, and we obtain a minimizing k-branch with the asymptotic
behaviour

lim
δ→0

2δ
k

2π
=
κc{ψbl}

2π
. (2.48)
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Figure 1. Comparison of 2δ k2/2π, calculated numerically for the profile class (I, 4.1) as described
in § 5 of Part 1 (points), to the constant (2.50) (solid line, indicated by the arrow).

Numerical computations performed with the boundary layer shape function (2.47)
yield the values

σc{ψbl} = 400.469 295 814 41(1), (2.49)

κc{ψbl}
2π

= 0.568 719 56(2). (2.50)

In figure 1 we compare 2δ k2/2π, calculated as a function of the Reynolds number
Re from the numerical data reported in § 5 of Part 1, to the constant value (2.50).

3. Scaling solutions to the variational principle
In the previous section we have studied the equations which embody the spectral

constraint (I, 2.13) and understood the main consequence that this constraint has for
the functions R0{φ}(k): if the profiles φ(z) are characterized by two shape functions
ψint(z) and ψbl(ξ), and if the Reynolds numbers become large, then R0{φ}(k) exhibits
(at least) two distinct minima. But we do not yet understand two further key obser-
vations made in the numerical analysis: first, the optimal upper bound on the energy
dissipation rate is not determined by an individual minimum, but after optimization
both R0, (2.18) and (2.46), turn out to be equal. Second, the numerically found optimal
profile parameters δ and p exhibit a pronounced scaling behaviour with Re. In order
to explain these findings, we now have to analyse the variational principle itself.

Given a shape function ψint(z) with the properties (2.14) and (2.15), and a shape
function ψbl(ξ) with properties (2.37) and (2.38), we now specify a profile family
whose members φδ,p(z) are continuously differentiable with respect to z, and depend
continuously on the parameters δ and p, by two requirements:

(i) each φδ,p obeys the boundary conditions and the symmetry condition (2.16), so
that each φδ,p is a candidate profile for the variational principle;

(ii) for each δ and p the derivative of φδ,p be determined by the derivatives of the
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shape functions ψint and ψbl according to

φ′δ,p(z) =

 ψ′bl
(
z/(2δ)

)
/(2δ) + p× O

(
δ−1
)

for 0 6 z 6 δ
pψ′int(z) for δ < z < 1− δ
ψ′bl
(
1− (1− z)/(2δ)

)
/(2δ) + p× O

(
δ−1
)

for 1− δ 6 z 6 1.
(3.1)

In contrast to the previous section, δ and p are now regarded as independent
parameters; the values of p range from zero to an upper bound that may depend on δ.

It can easily be verified that the profiles (I, 4.1) constitute such a family: the
corresponding shape functions are given by (2.20) and (2.47). It needs to be stressed
that the above specification of the profile family does, by itself, not imply any type
of relation between the parameters δ and p. The profiles φδ,p have been chosen such
that the lemmas 2.1 and 2.2 can be applied, provided the propositions (2.12) and
(2.40) can be fulfilled, which is not guaranteed by the above two requirements (i) and
(ii).

We will now determine, within this profile family φδ,p, the optimal upper bound
on cε for given asymptotically large rescaled Reynolds number R. In that case the
profile functional (I, 2.11)

D{φδ,p} =

∫ 1

0

dz
[
φ′δ,p(z)

]2 − 1 (3.2)

takes on large values, as a consequence of the spectral constraint (I, 2.13). Hence,
when seeking solutions to the variational principle (I, 2.12) with this constraint, we
can expand both the required root of the cubic polynomial (I, 2.20) that yields the
corresponding Reynolds number via (I, 2.19), and the right-hand side of (I, 2.12), in
powers of D{φδ,p}−1

:

Re = 2
3
R[1 + 4

27
D{φδ,p}−1

+ O(D{φδ,p}−2
)], (3.3)

cε =
27

16

D{φδ,p}
R

[1 + 8
9
D{φδ,p}−1

+ O(D{φδ,p}−2
)], (3.4)

where cε denotes the upper bound on cε given by the expression in curly brackets on
the right-hand side of (I, 2.12). We conclude: if, for sufficiently large R, the profile
function φδ,p that minimizes the profile functional (3.2) has been found, then this
same function yields the lowest possible upper bound on the energy dissipation rate
at a Reynolds number slightly above the asymptotic value 2

3
R. Whereas D{φδ,p} gives

only a small correction to Re = 2
3
R, the leading term of the expansion of cε is

directly proportional to D{φδ,p}. Thus, if R is asymptotically large, minimizing the
upper bound cε is tantamount to minimizing the profile functional D{φδ,p} under the
spectral constraint.

The profile functional (3.2) measures the deviation of its argument from the laminar
profile; it takes on values ranging from zero (for the laminar profile) to infinity. We
now demand that the deviation of our variational profiles φδ,p from the laminar
profile, as measured by D{φδ,p}, be monotonic in both δ and p. That is, in addition
to the properties (i) and (ii) listed above, we specify the family φδ,p by a third
requirement:

(iii) the dependence of the profiles on δ and p be such that

∂D{φδ,p}
∂p

< 0 (for fixed δ) and
∂D{φδ,p}
∂δ

< 0 (for fixed p). (3.5)
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This third specification, which restricts the possible functions ψint and ψbl , makes sure
that the measure for the deviation from the laminar profile increases if the slope p or
the extension of the boundary layer decreases. The previous family (I, 4.1) obviously
obeys these monotonic conditions, see (I, 4.2).

Since we already know that minimizing the upper bound on cε for a given large
R means minimizing D{φδ,p}, the requirements (3.5) imply that the minimal upper
bound is attained if both parameters δ and p take on, independently from each other,
the largest values that are permitted by the spectral constraint. We denote these
values as δR and pR . Now we can utilize the relations (2.19) and (2.45). It must be
kept in mind, however, that these relations hold only if the conditions (2.12) and
(2.40) are satisfied. We will therefore first assume that this is the case, and deduce
the ensuing scaling properties of δR and pR . In a second step we will show that
these scaling properties actually suffice to guarantee that the conditions are fulfilled,
so that the argument is self-consistent. This indirect strategy is the price to pay for
the detailed statements that we will obtain about the highly nonlinear variational
principle.

Assuming that the conditions are satisfied, then (2.19) and (2.45) hold. Since
the variational principle forces δ and p to their largest possible values δR and
pR , respectively, R1{φδ,p} and R2{φδ,p} take on, independently from each other, the
smallest possible values compatible with the spectral constraint. By the very definition
of the spectral constraint, the infimum of both R1{φδ,p} and R2{φδ,p} is R itself:

R1{φδR,pR} = R2{φδR,pR} = R. (3.6)

This is the mechanism that locks the two minima to the same value. Hence, we obtain
from (2.19) and (2.45) the asymptotic behaviour of the optimal parameters δR and
pR:

δR ∼
σc{ψbl}

2R
, pR ∼

Rc{ψint}
R

. (3.7)

To check the consistency of this reasoning we have to insert (3.7) into (3.1). Since

pR ∼
2Rc{ψint}
σc{ψbl}

δR,

i.e. pR = O(δR), we find for 0 6 z 6 δR the estimate

φ′δR,pR (z) =
ψ′bl
(
z/(2δR)

)
2δR

+ pR × O
(
δ−1
R

)
=
ψ′bl
(
z/(2δR)

)
2δR

+ O
(
δ0
R

)
= O

(
δ−1
R

)
;

analogously, φ′δR,pR (z) = O
(
δ−1
R

)
for 1− δR 6 z 6 1. On the other hand, for δR < z <

1 − δR we have φ′δR,pR (z) = O(δR). Thus, the conditions (2.12) and (2.40) required to
guarantee the validity of (2.19) and (2.45) are satisfied.

From now on we write δ and p for the optimized parameters, omitting the sub-
script R. By virtue of (3.3) the limit R →∞ is equivalent to the limit Re→∞. Hence,
we have proven a generalization of the numerically found scaling law (I, 5.4):

δ ∼ αRe−1, p ∼ βRe−1;

the scaling constants are identified as α = 1
3
σc{ψbl} and β = 2

3
Rc{ψint}. This type of

scaling holds for all profile families that stem from two shape functions and obey the
specifications (i), (ii), and (iii). It has to be emphasized that the practical calculation
of Rc{ψint} and σc{ψbl} from their respective eigenvalue problems, followed by a
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Figure 2. Comparison of the optimized parameter δ, as obtained in the numerical solution of the
variational principle with the profile family (I, 4.1) for Re > ReB (points; cf. Part 1, figure 5), to the
scaling solution (3.7) (solid line, indicated by the arrow).

minimization over the (rescaled) wavenumber, is much simpler than solving the full
problem for the corresponding high-R profiles.

To demonstrate the accuracy of our arguments, we resort once again to the profile
family (I, 4.1) and compare the analytically derived scaling behaviour (3.7) to the
corresponding data obtained in the numerical solution of the variational problem.
With Rc{ψint(z) = z} = ReES , see (I, 5.1), and σc{ψbl} from (2.49) we obtain δ and
p as functions of R. In figures 2 and 3 we show that there is excellent agreement
between the numerical data and the asymptotic laws for R > 2000. We then can
utilize these power laws to derive asymptotic expressions for the optimized profile
functional D{φδ,p}, the Reynolds number Re, and the optimal bound cε as functions
of R, see (3.2)–(3.4). In figure 4 we depict this asymptotic bound as a function of
Re in comparison with the numerical data, taken from figure 3 of Part 1. Most
remarkably, the asymptotic bound captures even the ascent of the numerical data
from the minimum point to the high-Re limit.

4. The limit Re = ∞: variational principle for the asymptotic boundary
layer shape function

In this section we try to obtain the best bound on the energy dissipation rate that
the variational principle can provide for infinitely large Reynolds numbers. We start
from a profile family φδ,p(z) that obeys the specifications (i), (ii), and (iii) formulated
in the previous section. Applied to this family, the variational principle (I, 2.12),
(I, 2.13) yields the scaling solutions (3.7) for the parameters δ and p. Since now we
are only interested in the asymptotic value limRe→∞ cε(Re ) ≡ c∞ε of the upper bound,

we conclude from § 2.2 that we may take the limit p
Re→∞−→ 0 first, and then δ

Re→∞−→ 0.
That is, we will obtain the correct value of c∞ε if we set p = 0 right from the outset,
and then take the limit δ → 0.

Inserting p = 0 into (3.1) and utilizing (2.37) and (2.16), we arrive at the one-



314 R. Nicodemus, S. Grossmann and M. Holthaus

103 104 105 106 107

R

p
Rc{ψint}

R

10–5

10–4

10–3

10–2

10–1

Figure 3. Comparison of the optimized parameter p, as obtained in the numerical solution of the
variational principle with the profile family (I, 4.1) for Re > ReB (points; cf. Part 1, figure 6), to the
scaling solution (3.7) (solid line, indicated by the arrow).
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Figure 4. Comparison of the asymptotic upper bound on cε, as obtained numerically with the
profile family (I, 4.1) (points, cf. Part 1, figure 3), to the asymptotic bound resulting from the scaling
solution (3.7) (long-dashed line). The solid line at the left shows the lower bound cε(Re) = Re−1.

parameter profile family

φδ,0(z) =

ψbl
(
z/(2δ)

)
for 0 6 z 6 δ

1
2

for δ < z < 1− δ
ψbl
(
1− (1− z)/(2δ)

)
for 1− δ 6 z 6 1.

(4.1)

With ξ = z/(2δ), as in (2.22), the right-hand side of (4.1) equals the function ψ(ξ)
defined in (2.39). In order to compute c∞ε , we first evaluate the profile functional



The background flow method. Part 2 315

D{φδ,0}. Since we have δ = σc{ψbl} /(2R) from (3.7), we find

D{φδ,0} =
R

σc{ψbl}

∫ 1

0

dξ
[
ψ′bl(ξ)

]2 − 1. (4.2)

Then (3.3) and (3.4) yield

c∞ε =
27

16

I{ψbl}
σc{ψbl}

, (4.3)

where we have introduced the new functional

I{ψbl} ≡
∫ 1

0

dξ
[
ψ′bl(ξ)

]2
. (4.4)

Clearly, the asymptotic bound c∞ε depends on the shape of the boundary layers only,
as determined by the shape function ψbl .

In this way we have obtained a rigorous asymptotic upper bound on cε for each
ψbl that is of the required form. Hence, the best possible asymptotic upper bound
within all families φδ,p is determined by a new variational principle:

lim
Re→∞

cε(Re ) 6 inf
ψbl

{
27

16

I{ψbl}
σc{ψbl}

}
, (4.5)

where ψbl is an arbitrary continuously differentiable function defined on the interval
[0, 1] with the properties (2.37) and (2.38), the functional I{ψbl} is given by (4.4), and
σc{ψbl} = minκ>0 {σ0{ψbl}(κ)}; the eigenvalue σ0{ψbl}(κ) has to be determined as the
smallest positive ρ-value solving the boundary value problem (2.23)–(2.28), (2.42) and
(2.43) with κ and ψbl as input.

The key point is that this new principle (4.5) is much simpler than the original
principle (I, 2.12), (I, 2.13), evaluated at asymptotically high Re. The new principle can
therefore be solved employing profiles with rather complicated boundary segments
(described by the boundary layer shape functions ψbl), even non-analytical ones, which
is practically impossible on the level of the original principle. By such an extensive
numerical investigation of (4.5), we found that at least a rather good approximation
to this principle’s solution can be obtained within the following one-parameter class
of shape functions:

ψ
(n)
bl (ξ) ≡

{
1
2
− 2n−1

(
1
2
− ξ
)n

for 0 6 ξ 6 1
2

1
2

+ 2n−1
(
ξ − 1

2

)n
for 1

2
< ξ 6 1

, n > 2. (4.6)

For each function ψ
(n)
bl , the boundary segments (i.e. the parts of ψ(n)

bl defined in
0 6 ξ 6 1

2
and 1

2
< ξ 6 1, respectively) are modelled by polynomials of order n which

have the property that the first n− 1 derivatives vanish at the matching point ξ = 1
2
.

For n = 2, in particular, the function ψ
(2)
bl is identical with the boundary layer shape

function (2.47) for the profile family (I, 4.1).
Unexpectedly, the best possible asymptotic upper bound on cε within the class

(4.6) is given by the limiting shape function limn→∞ ψ
(n)
bl (ξ). With increasing n the

functions ψ(n)
bl develop distinct internal boundary layers within the previous boundary

layers. The widths of these new internal layers can be characterized by the shape

functions’ inverse slopes at the origin ξ = 0, namely
[
ψ

(n) ′
bl (0)

]−1

= 1/n. It needs to

be emphasized that it is, nonetheless, the shape of the functions ψ(n)
bl in the entire

intervals 0 6 ξ 6 1
2

and 1
2
< ξ 6 1 that determines the bound on cε. If one replaced,
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n σc
{
ψ

(n)
bl

}
c∞ε

(n)

2 400.46929581441(1) 0.56184082612983(1)× 10−2

3 570.26826714776(1) 0.53264405105202(1)× 10−2

4 740.09950462354(2) 0.52116544235560(2)× 10−2

10 1757.8719829105(2) 0.5052460607890(1)× 10−2

100 17007.03473085(3) 0.498611288310(1)× 10−2

1000 169488.035203(1) 0.498071787211(2)× 10−2

10000 1694296.84184(2) 0.498019100769(6)× 10−2

100000 16942384.78(1) 0.4980138450(3)× 10−2

1000000 169423262(2) 0.498013326(6)× 10−2

Table 1.Asymptotic upper bounds oncε provided by shape functions (4.6) for increasing values of n.

for some large n, the internal boundary layers of thickness 1/n by the corresponding

segments from ψ
(2)
bl , shortened to 1/n, and then linked these two quadratic segments

with a constant piece ψ(ξ) = 1
2

for 1/n < ξ < 1− 1/n, one would merely obtain the

same value for the upper bound as ψ(2)
bl would have produced itself, not the better

bound resulting from ψ
(n)
bl .

In table 1 we present the numerical values for σc

{
ψ

(n)
bl

}
and the resulting asymptotic

upper bounds on cε, denoted as c∞ε
(n)

, for increasing values of n. In particular, c∞ε
(2)

equals the previously obtained bound (I, 5.3). Obviously, the data allow us to extract
the limit n→∞ with considerable accuracy:

lim
n→∞

c∞ε
(n)

= 0.498 013 3(1)× 10−2. (4.7)

Thus, the improvement that results from the optimization of the shape of the boundary
segments amounts to about 11%.

5. Incorporating a variational parameter for the shape of the boundary
segments

We now come back to the variational principle (I, 2.12), (I, 2.13) and to the solution
technique developed in §§ 3 and 4 of Part 1. The previous test profiles (I, 4.1), chosen
on the grounds of a simple guess, had been characterized merely by the thickness δ
of the profiles’ boundary segments and by their slope p in the interior. However, the
analysis carried through in the preceding section has revealed that in order to find
the best high-Re bound on cε that is obtainable from the background flow method
one has to resort to test profiles φ(z) that contain at least one variational parameter
governing the shape of the boundary segments.

Based on this insight, we now consider an extended class of test profiles:

φ(z) =


1
2

(1− p) + p z − 1
2

(1− p)
(
1− z/δ

)n
for 0 6 z 6 δ

1
2

(1− p) + p z for δ < z < 1− δ
1
2

(1− p) + p z + 1
2

(1− p)
(
1− (1− z)/δ

)n
for 1− δ 6 z 6 1.

(5.1)

This class contains three independent parameters: (a) the thickness δ of the boundary
segments (0 < δ 6 1

2
); (b) the profile slope p in the interior (0 6 p 6 1); (c) the
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Figure 5. Variational bounds on cε(Re). Solid line on the left: lower bound cε(Re) = Re−1; solid
upper line: optimal upper bound provided by the test profiles (I, 4.1), cf. figure 3 of Part 1; points:
improved upper bound obtained numerically with the help of the new parameter n that determines
the shape of the profiles’ boundary segments. The long-dashed line is the bound derived from the
scaling solutions (3.7) for n = 2; the short-dashed line continuing the points indicates the limit (4.7).

polynomial order n of the boundary segments (n = 2, 3, . . . ). At the matching points,
these profiles are n − 1 times continuously differentiable. In particular, fixing n = 2
leads us back to the previous test profiles (I, 4.1).

The profile functional (I, 2.11), evaluated within the class (5.1), adopts the form

D{φ} =

[
1

2

n2

(2n− 1) δ
− 1

]
(1− p)2 .

For each individual n the functions ψint(z) = z and ψbl(ξ) = ψ
(n)
bl (ξ) as defined in

(4.6) provide shape functions for the test profiles (5.1). Hence, for each fixed n these
profiles constitute a profile family φδ,p that obeys for 0 6 p < 1 the specifications (i),
(ii), and (iii) formulated in § 3. We therefore have scaling solutions (3.7); some values
of the ensuing asymptotic upper bounds c∞ε have been listed in table 1.

The overall optimal bound obtainable from the variation of all three parameters, δ,
p, and n, is drawn in figure 5. We also have included the upper bound on cε computed
previously from the profiles (I, 4.1), together with the upper bound derived from the
scaling solutions (3.7) for n = 2, and the asymptotic bound (4.7) pertaining to the
limit n→∞.

Although the improvement of the upper bound brought about by the additional
variational degree of freedom is not overwhelming – the absolute minimum is shifted
to slightly higher values of Re, and the asymptotic value of the bound is lowered by
about 11% – it is of considerable mathematical and physical interest to investigate the
new scaling behaviour of the optimal profile parameters. We can clearly distinguish
three different regimes:

(a) For Reynolds numbers less than ≈ 975, the overall optimal upper bound is
produced by the previous profile class (I, 4.1), so that in this regime the parameter
n remains tied to its smallest value, n = 2. Consequently, the bifurcation of the
wavenumbers minimizing R0{φ}(k), which occurs at Re = ReB ≈ 860, remains un-
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changed. The boundary segment thickness δ decreases monotonically with increasing
Re from 0.5 to its minimal value ≈ 0.14.

(b) In the following regime, for 975 . Re . 2280, we encounter a dramatic change
of the shape of the boundary segments: the parameter n increases from 2 to 19,
so that the internal boundary segments become steeper, while δ increases back to
its maximal possible value 0.5, so that the entire boundary segments reach deeper
and deeper into the bulk and finally join together. The bound on cε passes in this
Re-regime through its minimal value cε

min ≈ 0.443 88× 10−2.
(c) For Re above ≈ 2280, we obtain simple scaling laws for the profile parameters:

δ remains locked to the value 0.5, while n and p scale according to n ∼ aRe, p ∼ bRe−1

in the limit of large Re, with constants a and b. This corresponds to a power-law
change of the profile shape: the slope at the boundary z = 0 is given by

φ′(0) = p+
n

2δ
(1− p) ∼ n ∼ aRe,

whereas the slope in the middle z = 1
2

becomes

φ′
(

1
2

)
= p ∼ bRe−1.

The bound thus derived from the profiles (5.1) had already been included in the
overview given in figure 9 of Part 1.

6. Conclusions: the principles behind the principle
Let us summarize the main results obtained in both parts of our study. Despite

substantial numerical and analytical effort, it has not been possible to lower the value
(I, 2.8) of the asymptotic upper bound that the Optimum Theory provides for the rate
of energy dissipation in plane Couette flow (Busse 1970, 1978, 1996). In agreement with
the results obtained by Kerswell (1997), the asymptotic bound (I, 6.3) derived from
the extended Doering–Constantin principle coincides with Busse’s number, within the
uncertainty of that number.

And yet, the progress made in the present work is quite considerable. For the first
time it has been possible to derive a rigorous upper bound on the dissipation rate
that (i) compares favourably in the asymptotic regime with the bound given by the
Optimum Theory, (ii) is free from any assumption or uncontrolled approximation
whatsoever, and (iii) spans the entire range from the energy stability limit to asymp-
totically high Reynolds numbers. In particular, we have identified the mechanism
that determines the optimal upper bound in the cross-over regime from ‘low’ to ‘high’
Reynolds numbers, namely a bifurcation of the minimizing wavenumbers, and have
shown that the best asymptotic bound obtainable from the principle (I, 2.12), (I, 2.13)
is approached from below.

The important technical step that has made the numerical solution of the variational
principle feasible for almost arbitrary Reynolds numbers is the reformulation of its
spectral constraint (I, 2.13) as an initial value problem with simple boundary condition,
as outlined in § 3 of Part 1. Using this very technique, the extended Doering–Constantin
principle can now routinely be applied to other problems of interest, such as channel
flow or turbulent convection.

The analytical insight gained in this paper stems largely from the idea of the
shape functions that specify the variational profiles separately in the interior or in
the boundary layers. These shape functions have allowed us to explain the occurrence
of two branches of minimizing wavenumbers quantitatively. The additional obser-
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vation that the monotonic properties (3.5) suffice to guarantee the equilibration of
the two minima, and thereby to bring about the numerically observed scaling be-
haviour of the profile parameters with the Reynolds number, even has some aesthetic
appeal.

A key result of the analysis of the restricted, two-dimensional Couette problem
is the variational principle (4.5) for the bound on the dissipation rate in the limit
Re → ∞. Numerical work indicates that this principle can be solved within the one-
parameter class (4.6) of boundary layer shape functions ψbl . Hence, for all classes
of variational profiles which can be described by two shape functions according to
the specifications (i), (ii), and (iii) formulated in § 3, (4.7) represents the best possible
asymptotic bound for the restricted Couette problem. This implies that, if one tries to
solve the original variational principle (I, 2.12), (I, 2.13) within classes of two-shape-
function profiles that are arbitrarily more sophisticated than (5.1), one should be
able to improve the bound at finite Re, but not in the limit Re → ∞. We conjecture
that the profiles (5.1) yield the optimal asymptotic bound also for the unrestricted,
three-dimensional Couette flow, and have therefore used this class of test profiles to
compute the upper bound cε displayed in figure 8 of Part 1, even though we do not
have a formal proof of this conjecture.

Although a significant step forward has been made, it must be clearly recognized
that the derived bounds still lie an order of magnitude above the experimentally
measured data, as shown in figure 9 of Part 1. It appears inevitable to conclude
that a variational principle that is based entirely on the energy balance derived
from the Navier–Stokes equations is incapable of producing bounds close to the
observed experimental data. To obtain better bounds it seems necessary to formulate
an advanced principle that incorporates at least some aspects of the actual dynamics.

This work was supported by the Deutsche Forschungsgemeinschaft via the Son-
derforschungsbereich “Nichtlineare Dynamik”, SFB 185, and by the German–Israeli-
Foundation (GIF).

Appendix. Boundary value problem for rescaled profile functions with
‘infinitely’ extended interior

In this Appendix we evaluate the right-hand side of (2.41). To this end, we consider
in a first step the system of differential equations (2.23)–(2.28) for ξ > 0 with arbitrary
initial conditions and a constant function φ̃(ξ). For notational simplicity we write
y(ξ) and φ(ξ) instead of ỹ(ξ) and φ̃(ξ), respectively. The initial value problem then
reads

y′(ξ) = 2κA0y(ξ) , y(0) = y0; (A 1)

A0 is defined in (2.34). With the help of the Jordan normal form J ≡ C −1A0C
of A0,

J =


0 0 0 0 0 0
0 −2 0 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 , C ≡ 1

16


3 3 2 0 10 0
3 −3 0 2 0 0
0 0 0 0 0 16
3 3 −2 0 −6 0
3 −3 0 −2 0 0
3 3 2 0 −6 0

 ,
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we find the solution y(ξ) = Y (ξ)C −1y0, with

Y (ξ) =
1

16


3 3 e−4κξ 2 e−2κξ 4κξ e−2κξ

[
10 + 4κ2ξ2

]
e−2κξ 0

3 −3 e−4κξ 0 2 e−2κξ 4κξ e−2κξ 0
0 0 0 0 0 16 e−2κξ

3 3 e−4κξ −2 e−2κξ −4κξ e−2κξ −
[
6 + 4κ2ξ2

]
e−2κξ 0

3 −3 e−4κξ 0 −2 e−2κξ −4κξ e−2κξ 0
3 3 e−4κξ 2 e−2κξ 4κξe−2κξ

[
−6 + 4κ2ξ2

]
e−2κξ 0

 .

Note that the largest eigenvalue of A0 is zero. Therefore, all columns of Y (ξ) except for
the first are exponentially damped (since κ > 0); the first column is an eigenvector of
A0 belonging to the eigenvalue zero. As a consequence, the solution y(ξ) approaches
a constant vector proportional to this eigenvector in the limit of large ξ,

lim
ξ→∞

y(ξ) =
3

16

[
C −1y0

]
1
e0, (A 2)

where e0 ≡ (1, 1, 0, 1, 1, 1)T , and
[
C −1y0

]
1

denotes the first component of the vector

C −1y0.
We now formulate two different eigenvalue problems that refer to the shape

functions ψbl(ξ) introduced in § 2.2. For a given ψbl with the properties (2.37) and
(2.38), both eigenvalue problems are based on the system of differential equations
(2.23)–(2.28),

y′1 = 2κ [−y1 + y2] , (A 3)

y′2 = 2κ
[

1
2
y1 − y2 + 1

2
y4

]
, (A 4)

y′3 = −2κy3 −
σ

κ
ψ′bl y1, (A 5)

y′4 = 2κ [−y4 + y5] , (A 6)

y′5 = 2κ
[

1
4
y1 + 1

2
y4 − y5 + 1

4
y6

]
, (A 7)

y′6 = 2κ [y2 − y6] +
σ

2κ
ψ′bl y3. (A 8)

The first eigenvalue problem is defined by integrating this system from 0 to 1
2

with
initial values (2.29),

y(0) = (0, 0, 0, 0, 0, 1)T , (A 9)

and boundary condition [
C −1y

(
1
2

)]
1

= 0. (A 10)

With κ and ψbl as input, we search for the smallest positive value of σ which solves
this boundary value problem, denoted as σ(1){ψbl}(κ).

The second eigenvalue problem is defined by integrating the system from 1
2

to 1
with initial values (2.42),

y
(

1
2

)
= (1, 1, 0, 1, 1, 1)T = e0, (A 11)

and boundary condition (2.43),

y1(1) = 0. (A 12)

Again we search for the smallest positive value of σ which solves this boundary value
problem, denoted as σ(2){ψbl}(κ).

From the previous discussion it is clear that if one glues the left-hand boundary
segment of ψbl(ξ) at ξ = 1

2
to the constant function defined by ψ(ξ) = 1

2
for ξ > 1

2
,
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takes the result as an input to the system (A 3)–(A 8), and integrates it with initial
condition (A 9), then the choice σ = σ(1) ensures that the solution vector vanishes
in the limit ξ → ∞, since (A 10) sets the prefactor of e0 to zero, cf. (A 2). On the
other hand, the integration of the second problem starts with this eigenvector, so
that for σ = σ(2) the usual boundary condition posed at the end of the right-hand
boundary layer is satisfied. We remark that we do not want to treat the mathematically
non-trivial questions concerning the precise properties of the functions ψbl that can
guarantee the existence of the required values σ(1) and σ(2), but rather we assume that
ψbl is chosen appropriately.

Returning to the evaluation of the right-hand side of (2.41), we observe that

lim
δ→0

ρ0{ψ}(κ) = min
{
σ(1){ψbl}(κ) , σ(2){ψbl}(κ)

}
. (A 13)

Namely, in order to determine ρ0 we have to integrate the system (2.23)–(2.28) with
ψ as input, see (2.39), and make sure that the boundary condition (2.30) is satisfied.
When letting δ tend to zero, so that the length of the interior segment of ψ tends
to infinity, we are faced with the following alternative at the merging point to the
right-hand boundary layer: either the solution vector vanishes, since the prefactor
of e0 is zero, and consequently the solution will remain the zero-vector in the right-
hand boundary layer, or the solution vector is proportional to e0. In the first case
the eigenvalue ρ0 is by construction equal to σ(1), in the second case equal to σ(2).
Inverting this argument, if σ(1) and σ(2) have been determined from their eigenvalue
problems, two candidates for limδ→0 ρ0 have been found. Since ρ0 is defined as the
smallest positive eigenvalue, (A 13) follows. In the rest of this Appendix we will show
that σ(1) and σ(2) are actually equal.

To create a link between the two eigenvalue problems, we have to consider a third
one. For a given shape function ψbl we take an ε with −1 < ε < 1, and define the
function

ψε(ξ) ≡

 (1 + ε)ψbl(ξ) for 0 6 ξ 6 1
2

1
2

(1 + ε) for 1
2
< ξ < `+ 1

2

1− (1− ε)ψbl(`+ 1− ξ) for `+ 1
2
6 ξ 6 `+ 1.

This function equals ψ(ξ) as introduced in (2.39), if we set ε = 0 and ` = (2δ)−1 − 1.
Note that ε plays the role of an asymmetry parameter: the constant interior segment
is shifted by an amount ε/2 with respect to the previous value 1

2
. Such a shift will

turn out to be the key for connecting the eigenvalues σ(1) and σ(2).

Our third eigenvalue problem again arises from the system (A 3)–(A 8), but now
considered in the interval [0, `+ 1], and the input function ψbl is replaced by ψε. The
initial values (A 9) are supplemented by the boundary condition y1(`+ 1) = 0. The
smallest positive eigenvalue σ will now be written as σ`{ψbl}(ε, κ).

At this point we resort to a symmetry property of the actual physical problem,
namely the point symmetry with respect to

(
x = 0, z = 1

2

)
. This symmetry manifests

itself in the fact that the spectra of the eigenvalue problem (I, 2.13) for some fixed
R and two different functions φ1(z) and φ2(z) are identical, if both functions are
continuously differentiable and satisfy the boundary conditions at z = 0 and z = 1,
and are related by φ2(z) = 1 − φ1(1− z). It is not required that the two functions
obey the profiles’ symmetry condition. Since σ` corresponds to the passage of the
lowest eigenvalue through zero, and since the differential equations depend only on
the absolute value of the wavenumber, the relation ψ−ε(ξ) = 1− ψε(`+ 1− ξ) leads
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to the key equation

σ`{ψbl}(ε, κ) = σ`{ψbl}(−ε, κ) . (A 14)

Taking lim`→∞ σ`{ψbl}(ε, κ) ≡ σ∞{ψbl}(ε, κ), (A 14) yields

σ∞{ψbl}(ε, κ) = σ∞{ψbl}(−ε, κ) . (A 15)

We can now formulate the

Lemma. Let ψbl(ξ) be a shape function for the boundary layers. Then we have for
all κ > 0 the identity

σ(1){ψbl}(κ) = σ(2){ψbl}(κ) . (A 16)

Proof. For each shape function ψbl(ξ), rescaled wavenumber κ > 0, and ε taken
from the interval (−1, 1), we define σ̃(1){ψbl}(ε, κ) as the smallest positive value of
σ for which the boundary value problem posed by (A 3)–(A 8) with ψbl(ξ) replaced
by (1 + ε)ψbl(ξ), initial values (A 9), and boundary value (A 10) is solved. Likewise,
let σ̃(2){ψbl}(ε, κ) be the smallest positive value of σ for which the boundary value
problem posed by (A 3)–(A 8) with ψbl(ξ) replaced by 1 − (1− ε)ψbl(1− ξ), initial
values (A 11), and boundary value (A 12) is satisfied. Because the system (A 3)–(A 8)
depends on σ only through the product σψ′bl(ξ), we obtain

σ̃(1){ψbl}(ε, κ) =
1

1 + ε
σ(1){ψbl}(κ) ,

σ̃(2){ψbl}(ε, κ) =
1

1− ε σ
(2){ψbl}(κ) .

In analogy to the preceding discussion we deduce

lim
`→∞

σ`{ψbl}(ε, κ) = σ∞{ψbl}(ε, κ) = min
{
σ̃(1){ψbl}(ε, κ) , σ̃(2){ψbl}(ε, κ)

}
.

Thus, (A 15) produces the equation

min

{
1

1 + ε
σ(1){ψbl}(κ) ,

1

1− ε σ
(2){ψbl}(κ)

}
= min

{
1

1− ε σ
(1){ψbl}(κ) ,

1

1 + ε
σ(2){ψbl}(κ)

}
. (A 17)

If we now assume that σ(1) 6= σ(2), we may stipulate without loss of generality that
σ(1) < σ(2). Then we choose 0 < ε < 1 such that

1

1− ε σ
(1){ψbl}(κ) <

1

1 + ε
σ(2){ψbl}(κ) ,

and conclude from (A 17)

1

1 + ε
σ(1){ψbl}(κ) =

1

1− ε σ
(1){ψbl}(κ) .

This equation requires σ(1) = 0, which contradicts the proposition σ(1) > 0. Hence, we
necessarily have σ(1) = σ(2).

Applying this lemma to (A 13), we finally obtain

lim
δ→0

ρ0{ψ}(κ) = σ(1){ψbl}(κ) = σ(2){ψbl}(κ) . (A 18)

By definition, σ(2){ψbl}(κ) is identical to σ0{ψbl}(κ) as employed in § 2.2.
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